DeinoMPI

The Great and Terrible implementation of MPI-2

function index

MPI_Graph_create

Makes a new communicator to which topology information has been attached
int MPI_Graph_create(
  MPI_Comm comm_old,
  int nnodes,
  int *index,
  int *edges,
  int reorder,
  MPI_Comm *comm_graph
);

Parameters

comm_old
[in] input communicator without topology (handle)
nnodes
[in] number of nodes in graph (integer)
index
[in] array of integers describing node degrees (see below)
edges
[in] array of integers describing graph edges (see below)
reorder
[in] ranking may be reordered (true) or not (false) (logical)
comm_graph
[out] communicator with graph topology added (handle)

Remarks

 

MPI_GRAPH_CREATE returns a handle to a new communicator to which the graph topology information is attached. If reorder = false then the rank of each process in the new group is identical to its rank in the old group. Otherwise, the function may reorder the processes. If the size, nnodes, of the graph is smaller than the size of the group of comm, then some processes are returned MPI_COMM_NULL, in analogy to MPI_CART_CREATE and MPI_COMM_SPLIT. The call is erroneous if it specifies a graph that is larger than the group size of the input communicator.

The three parameters nnodes, index and edges define the graph structure. nnodes is the number of nodes of the graph. The nodes are numbered from 0 to nnodes-1. The ith entry of array index stores the total number of neighbors of the first i graph nodes. The lists of neighbors of nodes 0, 1, ..., nnodes-1 are stored in consecutive locations in array edges. The array edges is a flattened representation of the edge lists. The total number of entries in index is nnodes and the total number of entries in edges is equal to the number of graph edges.

Each process must provide a description of the entire graph, not just the neigbors of the calling process.

The definitions of the arguments nnodes, index, and edges are illustrated with the following simple example.

Example

Assume there are four processes 0, 1, 2, 3 with the following adjacency matrix:
 

 

Then, the input arguments are:
 

 

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in edges[j], for and the list of neighbors of node i, , is stored in edges[j], .

In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is the degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in edges(j), for and the list of neighbors of node i, , is stored in edges(j), .

 

Algorithm

We ignore the reorder info currently.

Thread and Interrupt Safety

This routine is thread-safe. This means that this routine may be safely used by multiple threads without the need for any user-provided thread locks. However, the routine is not interrupt safe. Typically, this is due to the use of memory allocation routines such as malloc or other non-MPICH runtime routines that are themselves not interrupt-safe.

Notes for Fortran

All MPI routines in Fortran (except for MPI_WTIME and MPI_WTICK) have an additional argument ierr at the end of the argument list. ierr is an integer and has the same meaning as the return value of the routine in C. In Fortran, MPI routines are subroutines, and are invoked with the call statement.

All MPI objects (e.g., MPI_Datatype, MPI_Comm) are of type INTEGER in Fortran.

Errors

All MPI routines (except MPI_Wtime and MPI_Wtick) return an error value; C routines as the value of the function and Fortran routines in the last argument. Before the value is returned, the current MPI error handler is called. By default, this error handler aborts the MPI job. The error handler may be changed with MPI_Comm_set_errhandler (for communicators), MPI_File_set_errhandler (for files), and MPI_Win_set_errhandler (for RMA windows). The MPI-1 routine MPI_Errhandler_set may be used but its use is deprecated. The predefined error handler MPI_ERRORS_RETURN may be used to cause error values to be returned. Note that MPI does not guarentee that an MPI program can continue past an error; however, MPI implementations will attempt to continue whenever possible.

MPI_SUCCESS
No error; MPI routine completed successfully.
MPI_ERR_TOPOLOGY
Invalid topology. Either there is no topology associated with this communicator, or it is not the correct type (e.g., MPI_CART when expecting MPI_GRAPH).
MPI_ERR_COMM
Invalid communicator. A common error is to use a null communicator in a call (not even allowed in MPI_Comm_rank).
MPI_ERR_ARG
Invalid argument. Some argument is invalid and is not identified by a specific error class (e.g., MPI_ERR_RANK).

Example Code

The following sample code illustrates MPI_Graph_create.

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

int main( int argc, char *argv[] )
{
    int errs = 0, i, k;
   
    int dims[2], periods[2], wsize;
   
int outdims[2], outperiods[2], outcoords[2];
    int topo_type;
    int *index, *edges, *outindex, *outedges;
    MPI_Comm comm1, comm2;

    MPI_Init( &argc, &argv );
    MPI_Comm_size( MPI_COMM_WORLD, &wsize );

   
/* Create a cartesian topology, get its characteristics, then
        dup it and check that the new communicator has the same properties */
    dims[0] = dims[1] = 0;
    MPI_Dims_create( wsize, 2, dims );
    periods[0] = periods[1] = 0;
    MPI_Cart_create( MPI_COMM_WORLD, 2, dims, periods, 0, &comm1 );
    MPI_Comm_dup( comm1, &comm2 );
    MPI_Topo_test( comm2, &topo_type );
    if (topo_type != MPI_CART) {
        errs++;
        printf( "Topo type of duped cart was not cart\n" );fflush(stdout);
    }
    else {
        MPI_Cart_get( comm2, 2, outdims, outperiods, outcoords );
       
for (i=0; i<2; i++) {
            if (outdims[i] != dims[i]) {
                errs++;
                printf( "%d = outdims[%d] != dims[%d] = %d\n", outdims[i], i, i, dims[i] );fflush(stdout);
            }
           
if (outperiods[i] != periods[i]) {
                errs++;
                printf( "%d = outperiods[%d] != periods[%d] = %d\n", outperiods[i], i, i, periods[i] );fflush(stdout);
            }
        }
    }
    MPI_Comm_free( &comm2 );
    MPI_Comm_free( &comm1 );

   
/* Now do the same with a graph topology */
   
if (wsize >= 3) {
        index = (
int*)malloc(wsize * sizeof(int) );
        edges = (
int*)malloc(wsize * 2 * sizeof(int) );
       
if (!index || !edges) {
            printf( "Unable to allocate %d words for index or edges\n", 3 * wsize );fflush(stdout);
            MPI_Abort( MPI_COMM_WORLD, 1 );
        }
        index[0] = 2;
       
for (i=1; i<wsize; i++) {
            index[i] = 2 + index[i-1];
        }
        k=0;
       
for (i=0; i<wsize; i++) {
            edges[k++] = (i-1+wsize) % wsize;
            edges[k++] = (i+1) % wsize;
        }
        MPI_Graph_create( MPI_COMM_WORLD, wsize, index, edges, 0, &comm1 );
        MPI_Comm_dup( comm1, &comm2 );
        MPI_Topo_test( comm2, &topo_type );
       
if (topo_type != MPI_GRAPH) {
            errs++;
            printf( "Topo type of duped graph was not graph\n" );fflush(stdout);
        }
       
else {
           
int nnodes, nedges;
            MPI_Graphdims_get( comm2, &nnodes, &nedges );
           
if (nnodes != wsize) {
                errs++;
                printf( "Nnodes = %d, should be %d\n", nnodes, wsize );fflush(stdout);
            }
           
if (nedges != 2*wsize) {
                errs++;
                printf( "Nedges = %d, should be %d\n", nedges, 2*wsize );fflush(stdout);
            }
            outindex = (
int*)malloc(wsize * sizeof(int) );
            outedges = (
int*)malloc(wsize * 2 * sizeof(int) );
           
if (!outindex || !outedges) {
                printf( "Unable to allocate %d words for outindex or outedges\n", 3 * wsize );fflush(stdout);
                MPI_Abort( MPI_COMM_WORLD, 1 );
            }

            MPI_Graph_get( comm2, wsize, 2*wsize, outindex, outedges );
           
for (i=0; i<wsize; i++) {
               
if (index[i] != outindex[i]) {
                    printf( "%d = index[%d] != outindex[%d] = %d\n", index[i], i, i, outindex[i] );fflush(stdout);
                    errs++;
                }
            }
           
for (i=0; i<2*wsize; i++) {
               
if (edges[i] != outedges[i]) {
                    printf( "%d = edges[%d] != outedges[%d] = %d\n", edges[i], i, i, outedges[i] );fflush(stdout);
                    errs++;
                }
            }
            free( outindex );
            free( outedges );
        }
        free( index );
        free( edges );
        MPI_Comm_free( &comm2 );
        MPI_Comm_free( &comm1 );
    }

    MPI_Finalize();
   
return 0;
}